Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Antibiotics (Basel) ; 11(8)2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-2023069

ABSTRACT

Cathelicidins are potent antimicrobial peptides with broad spectrum antimicrobial activity in many vertebrates and an important component of the innate immune system. However, our understanding of the genetic variations and biological characteristics of bat cathelicidins is limited. In this study, we performed genome-level analysis of the antimicrobial peptide cathelicidins from seven bat species in the six families, listed 19 cathelicidin-like sequences, and showed that the number of functional cathelicidin genes differed among bat species. Based on the identified biochemical characteristics of bat cathelicidins, three cathelicidins, HA-CATH (from Hipposideros armiger), ML-CATH (from Myotis lucifugus), and PD-CATH (from Phyllostomus discolor), with clear antimicrobial signatures were chemically synthesized and evaluated antimicrobial activity. HA-CATH showed narrow-spectrum antibacterial activity against a panel of 12 reference bacteria, comprising 6 Gram-negative and 6 Gram-positive strains. However, ML-CATH and PD-CATH showed potent antibacterial activity against a broad spectrum of Gram-negative and Gram-positive bacteria with minimum inhibitory concentration (MIC) of 1 and 3 µg/mL, respectively, against Staphylococcus aureus. ML-CATH and PD-CATH also showed antifungal activities against Candida albicans and Cryptococcus cuniculi with MIC of 5 to 40 µg/mL, respectively, and 80% inhibition of the metabolism of Mucor hiemalis hyphae at 80 µg/mL, while displaying minimal cytotoxicity to HaCaT cells. Taken together, although the spectrum and efficacy of bat cathelicidins were species-dependent, the antimicrobial activity of ML-CATH and PD-CATH was comparable to that of other highly active cathelicidins in vertebrates while having negligible cytotoxicity to mammalian cells. ML-CATH and PD-CATH can be exploited as promising candidates for the development of antimicrobial therapeutics.

2.
Sci Rep ; 12(1): 1005, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1635617

ABSTRACT

The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a public health emergency, and research on the development of various types of vaccines is rapidly progressing at an unprecedented development speed internationally. Some vaccines have already been approved for emergency use and are being supplied to people around the world, but there are still many ongoing efforts to create new vaccines. Virus-like particles (VLPs) enable the construction of promising platforms in the field of vaccine development. Here, we demonstrate that non-infectious SARS-CoV-2 VLPs can be successfully assembled by co-expressing three important viral proteins membrane (M), envelop (E) and nucleocapsid (N) in plants. Plant-derived VLPs were purified by sedimentation through a sucrose cushion. The shape and size of plant-derived VLPs are similar to native SARS-CoV-2 VLPs without spike. Although the assembled VLPs do not have S protein spikes, they could be developed as formulations that can improve the immunogenicity of vaccines including S antigens, and further could be used as platforms that can carry S antigens of concern for various mutations.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Coronavirus M Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Vaccines, Virus-Like Particle/immunology , Viroporin Proteins/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Coronavirus M Proteins/genetics , Coronavirus M Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Tobacco/immunology , Tobacco/metabolism , Tobacco/virology , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/metabolism , Viroporin Proteins/genetics , Viroporin Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL